Search results for "genotypic diversity"

showing 1 items of 1 documents

Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt

2009

Natural disease-suppressive soils provide an untapped resource for the discovery of novel beneficial microorganisms and traits. For most suppressive soils, however, the consortia of microorganisms and mechanisms involved in pathogen control are unknown. To date, soil suppressiveness to Fusarium wilt disease has been ascribed to carbon and iron competition between pathogenic Fusarium oxysporum and resident non-pathogenic F. oxysporum and fluorescent pseudomonads. In this study, the role of bacterial antibiosis in Fusarium wilt suppressiveness was assessed by comparing the densities, diversity and activity of fluorescent Pseudomonas species producing 2,4-diacetylphloroglucinol (DAPG) (phlD+) …

chlororaphis pcl1391Antifungal AgentsDISEASE SUPRESSIVE SOILMicroorganismColony Count Microbialdose-response relationshipsFLUORESCENT PSEUDOMONADSblack root-rotPlant Rootsgraminis var triticiFusariumSolanum lycopersicumFlaxCluster AnalysisFUSARIUM WILTPathogenPhylogenySoil Microbiologymedia_commonEcologyEPS-2genotypic diversityfood and beveragesBiodiversitygenetic diversityFusarium wilt[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyPHENAZINE ANTIBIOTICSPolymorphism Restriction Fragment LengthDNA BacterialGenotypemedia_common.quotation_subject2PhloroglucinolBiologyMicrobiologyCompetition (biology)MicrobiologyPseudomonasAntibiosisBotanyFusarium oxysporumEcology Evolution Behavior and Systematicsbiological-controlAntibiosisbiology.organism_classificationLaboratorium voor PhytopathologieLaboratory of Phytopathology24-diacetylphloroglucinol-producing pseudomonasoxysporum fo47PhenazinesBeneficial organismAntagonism4-diacetylphloroglucinol-producing pseudomonasnonpathogenic fusarium
researchProduct